Friday, 9 October 2015

Process Piping & Pipelines System



 

One of the most important components of the infrastructure in the industrialized world is the vast network of pipelines and process piping—literally millions and millions of miles. The term “pipelines” generally refers to the network of pipelines that transport water, sewage, steam, and gaseous and liquid hydrocarbons from sources (e.g., reservoirs, steam plants, oil and gas wells, refineries) to local distribution centers (“transmission pipelines”), and to the network of pipelines that distribute such products to local markets and end users (“distribution” pipelines). The term “process piping” generally refers to the system of pipes that transport process fluids (e.g., air, steam, water, industrial gases, fuels, chemicals) around an industrial facility involved in the manufacture of products or in the generation of power. Pipelines and process piping are generally made of steel, cast iron, copper, or specialty metals in certain highly aggressive environments, but the use of plastic materials is growing, especially in hydrocarbon-based distribution lines and in sewer lines. Very large-diameter water transmission lines are often made of reinforced concrete.

The most common method of joining the individual segments of pipe is by welding (or soldering in the case of copper, and gluing in the case of plastics), although bolted flanges or threaded connections are often used in smaller-diameter process piping. In low-pressure piping systems that transport non-hazardous fluids like water and sewage, mechanical joints (e.g., “ball and spigot,” compression) that rely on friction are commonly used. Pipelines and piping are usually constructed and maintained in accordance with national and local regulations and applicable industry standards. For example, the most commonly used industrial code for the transport of liquids is ASME B31.4. B31.8 is most commonly used for the transmission and distribution of gas, and ASME B31.3 most often applies to process piping. Once assembled, pipelines are usually buried, but process piping is usually above ground.

Pipelines and process piping are the safest means to transport gases and fluids across countries or across manufacturing facilities. However, given the extensive network of pipelines and piping, failures do occur, which can be quite spectacular and lead to extensive property damage and loss of life. Given their potential impact, it is important to investigate the cause(s) of such failures, which often involve input from many different engineering and scientific disciplines. As such, Exponent, with its broad range of skill sets, is uniquely positioned to investigate such failures, and has done so on hundreds of occasions, ranging from quarter-inch process tubing to 20-ft-diameter concrete water distribution pipelines.

Equally important, of course, is the prevention of pipeline and piping failures. Our scientists and engineers provide in-depth technical knowledge that has enabled us to make significant contributions to clients during the design, layout, and construction of pipelines and piping systems, and in the development and implementation of integrity and risk management programs. Exponent staff has brought their expertise to bear on preventive projects ranging in scope from reviewing the design and construction of the process piping at petrochemical plants to overall integrity reviews of long-distance oil and gas transmission pipeline systems.

Clients that have utilized Exponent’s pipeline and process piping expertise have included Fortune 500 manufacturing and petrochemical companies, utilities, pipeline companies, insurers, and capital project lending organizations.
read more

Analysis Pipeline Failure


Applied Technical Services performs metallurgical pipe failure analysis and corrosion testing. Our capabilities include root cause determination of component and material failures incorporating analysis of engineering problems and specifications.
Our assessment services include evaluating various process and water pipe failures manufactured from steel pipe, PVC pipe, copper pipe, ABS pipe, CPVC pipe, HDPE pipe, polyethylene pipe, cast iron pipe and Kitec pipe. We perform scanning electron microscopy (SEM); microstructural analysis; optical metallography; mechanical property analysis; and scale and corrosion deposit analysis.
Our procedures assess, investigate and test engineered materials to identify the causes of failure events. In addition to problem solving, ATS assists in removing the root cause by systematically reviewing the components and processes that led to failure. Our pipe failure analysis material engineers reconstruct incidents, collect and analyze critical data for detailed analysis and reporting.
Our goal is to provide thorough pipe failure analysis results in compliance with industry standards by delivering economical and technologically advanced solutions.
Failure theories provide techniques to calculate stresses, and damage mechanisms describe material failures due to those stresses. Code techniques provide safe, conservative rules for initial pipe design, but the analysis of pipe failures requires added understanding of failure theories, plastic deformation, fatigue cracks, and crack growth after initial fracture.

Types of Pipe Failure Analysis:

  • Pipeline Failure Analysis
  • PVC Pipe Failure
  • Copper Pipe Failure
  • Water Pipe Failure
  • ABS Pipe Failure
  • CPVC Pipe Failure
  • HDPE Pipe Failure
  • Polyethylene Pipe Failure
  • Cast Iron Pipe Failure
  • KITEC Pipe Failure
read more

Friday, 2 October 2015

Mechanical Failure Analysis


ATS’ mechanical failure analysis team is dedicated to helping individuals, corporations and manufacturers identify the root causes of component and system failures. Our technically advanced labs enable our experts to perform accurate and efficient tests, incorporated in precise and detailed reports. With years of experience, our professionals perform daily inspections on a wide variety of mechanical failures which may include common fatigue and overstress failures to and unique failures.
Our services are prevalent among the automotive, aerospace, nuclear, manufacturing and military industries. Testing is performed per industry standards, including ASTM E2332, ASTM E3, ASTM E18, ASTM E384, ASTM E112, ASTM E10, ASTM A247, ASTM B487, ASTM B748, equivalent ISO standards, and applicable specialized procedures.
Tests Include:
  • Optical Factography
  • Scanning Electron Microscopy
  • Energy Dispersive Spectoroscopy (EDS)
  • Impact Testing
  • Tensile Testing
  • Shear Testing
  • Torsion Testing
  • Pressure Testing
  • Hardness Testing
Results May Reveal Mechanical Failures Due To:
  • Ductility Issues
  • Brittle Products and Components
  • Fatigue
  • Overload
  • Environmental Effects
  • Manufacturing Defects
  • Contamination
  • Corrosion
read more

Wednesday, 30 September 2015

Onshore & Offshore Structures & Systems

Onshore Structures and Systems
 
Exponent is actively involved in providing risk assessment services for owners and operators of onshore petrochemical process facilities. These assessments focus on naturally occurring hazards such as hurricanes and earthquakes, and also on man-made hazards like vapor-cloud explosions. The scope of services provided by Exponent includes probabilistic and deterministic hazard definitions, onsite inspections, structural and material load and stress analyses using advanced modeling tools, vulnerability determinations, probable maximum loss estimations for property and business, and mitigation planning. The broad range of expertise among our staff enables us to conduct such assessments in a thorough and timely manner. The benefits of our multidisciplinary approach include better understanding of employee exposures to potentially hazardous situations, improved knowledge of asset vulnerabilities, identification of opportunities for cost-effective mitigation measures to reduce potential losses, and more thorough assessment of loss exposures from an insurance perspective.
Offshore Structures and Systems 
 
Exponent can assist offshore oil and gas operators with determination of load capacities and performance levels for a range of fixed and floating production or storage systems. These services include using advanced modeling tools to conduct structural analyses of platform systems or components, from caisson wellheads to drilling derricks, in accordance with the latest American Petroleum Institute best practices and specifications. Our analytical expertise and capabilities also include pipelines and well completion (casing and tubing). We have extensive expertise in materials testing, modeling, and thermal load analysis, which are important considerations when dealing with the extreme operating environments often encountered by oil and gas operators. Several of Exponent’s senior technical staff have previous work experience with major energy companies, and therefore are familiar with the needs and challenges faced by the offshore industry.
read more

Sunday, 20 September 2015

Petrochemical Industry



Chemical process accidents are often the result of unexpected interaction between automated process equipment and operators. In the drive to improve safety and reliability, chemical process facilities tend to rely heavily on automation using sophisticated instrumentation, computers, and programmable logic controllers to run their plants. In an effort to improve energy efficiency and reduce pollution, various pieces of equipment are interconnected in ways that complicate their operation. Equipment failures or operator errors can lead to sudden and unexpected changes in the plant operation. If these disruptions to normal process operation exceed the capabilities of the operators or the capacity of the safety systems, a severe accident can occur, potentially producing a devastating fire, explosion, or toxic release. 



The petrochemical process industries represent a significant contribution to the world economy. Companies in this industry produce a wide variety of products, including ethylene, vinyl chloride, styrene monomer, propylene, benzene, toluene, and xylene, which are the raw materials for many plastics. Producing these chemicals involves handling hazardous materials and managing large amounts of energy. Because of these conditions, when something goes wrong at a petrochemical processing facility, it can have catastrophic consequences. 

 

With more than 40 years of experience analyzing thousands of failures, Exponent is a leader in loss investigation, including material failures, fires, and explosions. These investigations range from high-loss disasters to small incidents for major national and international oil refiners. This experience provides Exponent engineers and scientists unique insights in addressing various risk and reliability issues and assessing environmental and health impacts, to help our clients increase the safety of their personnel, processes, and facilities and minimize operational disruptions and property loss. Additionally, our expertise in risk assessment, release characterization, dispersion modeling, vapor cloud explosion analysis, industrial hygiene, toxicology, and epidemiology allows us to comprehensively examine the consequences of both hypothetical and actual releases of toxic and flammable substances.
Exponent has a wide range of in-house expertise that integrates the latest process, safety, risk, and environmental developments into our work. As a result, we can address everything from small, focused analyses to complex, multi-disciplinary projects. The capabilities of our experts allow Exponent to offer the following services:
  • Accident and incident investigation 
  • Root-cause analysis (RCA) 
  • Fire and explosion analysis 
  • Fire protection engineering 
  • Fitness-for-service evaluation 
  • Specification, corrosion control, and failure analysis of materials 
  • Evaluation of pressure relief systems, vessels, and piping 
  • Analysis of atmospheric releases, spills, and environmental fate 
  • Groundwater and soil remediation support 
  • Compliance with standards and regulations 
  • Risk and reliability analysis and quantitative risk assessment 
  • Process hazards analysis (PHA) 
  • Hazard and operability analysis (HAZOP) 
  • Failure modes and effects analysis (FMEA) 
  • Review of process safety management (PSM) and risk management program (RMP) 
  • Safety and health training 
  • Environmental impact and baseline assessments 
  • Site security and vulnerability analysis 
  • Site investigation and remediation 
  • Hydrology and groundwater monitoring 
  • Project management, performance, scheduling, and construction delay analysis
 
Further, Exponent is actively involved in providing risk assessment services for owners and operators of onshore petrochemical process facilities. These assessments focus on naturally occurring hazards such as hurricanes and earthquakes, and also on man-made hazards such as vapor cloud explosions. The scope of services provided by Exponent includes probabilistic and deterministic hazard definitions, onsite inspections, structural and material load and stress analyses using advance modeling tools, vulnerability determinations, probable maximum loss estimations for property and business, and mitigation planning. The broad range of expertise among various Exponent practices enables us to offer clients the skills necessary to conduct such assessments in a thorough and timely manner. The benefits include better understanding of employee exposures to potentially hazardous situations, current knowledge of asset vulnerabilities, identification of opportunities for cost-effective mitigation measures to reduce potential losses, and better knowledge of loss exposures from an insurance perspective.
Exponent engineers and scientists regularly publish in leading technical journals, present at conferences, serve on National Fire Protection Association (NFPA) and American Society for Testing and Materials (ASTM) technical committees, chair American Institute of Chemical Engineers (AIChE) conference sessions, and provide peer review for journals such as Process Safety Progress, Journal of Petroleum Science & Engineering (JPSE), and Journal of Loss Prevention in the Process Industries (JLPPI).
read more

Sunday, 30 August 2015

Oil and gas exploration, and production life cycle

Oil and gas exploration, and production life cycle
Cairn looks to create, add and realise value for stakeholders, but not at the expense of the safety and well-being of people and the environment. We manage the risks associated with our business responsibly for all our activities and wherever we operate. This means, we aim to behave professionally in our dealings with people and within the environment from the very start of any project or activity.
The oil and gas business is, by nature, long-term and our approach covers every stage of the oil and gas life-cycle and is outlined below.


1. Due diligence
Before making an acquisition or investment, applying for an exploration licence or farming-in to an existing project, Cairn carries out an extensive risk-screening process which includes assessing whether there are potential health and safety, social, human rights, political, corruption, security or environmental impacts. This is used in decision-making on whether or not to proceed and if investment goes ahead it informs approaches to risk management going forward.
In 2014 we conducted due diligence on farm-in opportunities including the Mesana blocks in Spain.  We farmed-in to the PL420 block and drilling project operated by Statoil in the Norwegian sector of the North Sea. We also farmed out of UK sector blocks P2040 and P2086, reducing our interests south of Catcher.
2. Prequalification
When we apply for an exploration licence, the necessary documents are submitted to the relevant authorities. Typically this includes information about our legal status, financial capability, technical competence and plans to manage health, safety and environmental risks, and contributions to local economic development.
In 2014 Cairn participated in the 23rd licensing round in the Barents Sea, Norway.
3. Exploration seismic
Once Cairn has been awarded the right to explore in a certain area, we may carry out seismic surveys to develop a picture of geological structures below the surface. This helps identify the likelihood of an area containing hydrocarbons. Seismic surveys are usually preceded by an assessment of environmental, social and human rights impacts, which are managed through the Project Delivery Process (PDP).
During 2014 Cairn successfully completed seismic surveys offshore the Republic of Ireland and Malta. As non-operator, we also participated in seismic operations offshore Western Sahara.  Application for seismic surveys is pending offshore the Gulf of Valencia.
4. Site survey
Before commencing any drilling activity, site surveys are carried out to gain more detailed information on the area where an exploration well may be drilled, and to confirm that the selected drilling location is safe and that any sensitive environments can be avoided.
The process normally involves taking geological samples from the seabed and carrying out shallow seismic surveys. These activities have low social and environmental impacts and therefore usually do not require a separate Environmental Impact Assessment (EIA) or Social Impact Assessment (SIA).
Pre- and post-drilling surveys were completed for wells offshore Senegal and following drilling offshore Morocco.
5. Exploration drilling
Exploration wells are drilled to determine whether oil or gas is present. This phase can be accompanied by a step-change in activity and visibility to local people as offshore exploration can involve a drilling rig, supply vessels and helicopters for transporting personnel.
Exploration drilling is preceded by an assessment to understand potential health, safety, environmental, social, security and human rights impacts. These assessments identify appropriate steps to reduce impacts, manage risks and assist in operating responsibly. Limited community development programmes may also be put into place at this time depending on the nature of the programme.
In 2014 we continued our exploration drilling campaign offshore Morocco, and initiated and completed an exploration drilling campaign offshore Senegal. We were also involved, as non-operator, in exploration drilling in the UK and Norwegian North Sea. Drilling in the Cap Boujdour block, offshore Western Sahara, commenced in December 2014.
6. Appraisal drilling
If promising amounts of oil and gas are confirmed during the exploration phase, field appraisal is used to establish the size and characteristics of the discovery and to provide technical information to determine the optimum method for recovery of the oil and gas. The potential social and environmental impacts associated with appraisal drilling are comparable to exploration drilling, and similar assessments are carried out in advance.
Due to the delay in refurbishment of the Blackford Dolphin rig, the proposed Spanish Point appraisal well, offshore Republic of Ireland, could not be drilled in 2014 during the safe weather window and was therefore postponed. Plans are well advanced to drill this well, subject to the necessary approvals.  Preparation for anticipated appraisal drilling in Senegal is also underway.
7. Development
If appraisal wells show technically and commercially viable quantities of oil and gas, a development plan is prepared and submitted to the relevant authorities for approval. This includes a rigorous assessment of all the potential risks and a long-term assessment of environmental and social impacts covering a timeframe of between 10 and 30 years. The plan will also detail projected benefits to local communities, for example employment and supplier opportunities, as well as proposing how to manage potential impacts such as an influx of workers from outside the local community. At this stage good design is important to remove and mitigate risks to an acceptable level as well as managing construction and installation in a manner to likewise minimise impacts.
We are participating as non-operator in two development projects, the Kraken and Catcher fields, in the UK North Sea.
8. Production
A variety of options are available for the production of oil and gas. During this phase, which can last many decades, regular reviews are made of social and environmental performance to ensure that impacts identified in the assessments are mitigated. Changes in the risks associated with activities are assessed throughout the production period. Safe operations remain an ongoing requirement at this stage, which means personnel are competent and good HSE behaviours are in place and equipment is properly maintained and operated.
We currently have no operated production, but historically had significant production through our Indian business, Cairn India Limited (CIL), which we subsequently exited. Our involvement in exploration, and latterly production in India, brought social and economic development to a number of regions.
We anticipate production from our non-operated Catcher and Kraken fields from 2016/2017.
9. Decommissioning
This phase occurs when hydrocarbons can no longer be extracted safely or economically at the end of any field life-cycle. Decommissioning consists of closing operations in a manner that protects people and the environment and to avoid unacceptable legacy issues for local stakeholders and the Company. We are not engaged in any decommissioning activities at this time.

read more

Working Progress of Wind Turbines

A wind turbine works the opposite of a fan. Instead of using electricity to make wind, like a fan, wind turbines use wind to make electricity. The wind turns the blades, which spin a shaft, which connects to a generator and makes electricity. View the wind turbine animation to see how a wind turbine works or take a look inside.
Wind is a form of solar energy and is a result of the uneven heating of the atmosphere by the sun, the irregularities of the earth's surface, and the rotation of the earth. Wind flow patterns and speeds vary greatly across the United States and are modified by bodies of water, vegetation, and differences in terrain. Humans use this wind flow, or motion energy, for many purposes: sailing, flying a kite, and even generating electricity.
The terms wind energy or wind power describe the process by which the wind is used to generate mechanical power or electricity. Wind turbines convert the kinetic energy in the wind into mechanical power. This mechanical power can be used for specific tasks (such as grinding grain or pumping water) or a generator can convert this mechanical power into electricity.

Types of Wind Turbines

Wind turbines at the Forward Wind Energy Center in Fond du Lac and Dodge Counties, WisconsinAn eggbeater-style wind turbine named after its French inventor Darrieus.
Modern wind turbines fall into two basic groups: the horizontal-axis variety, as shown in the photo to the far right, and the vertical-axis design, like the eggbeater-style Darrieus model pictured to the immediate right, named after its French inventor. Horizontal-axis wind turbines typically either have two or three blades. These three-bladed wind turbines are operated "upwind," with the blades facing into the wind.
Wind turbines can be built on land or offshore in large bodies of water like oceans and lakes. Though the United States does not currently have any offshore wind turbines, the Department of Energy is funding efforts that will make this technology available in U.S. waters.

Sizes of Wind Turbines

GE Wind Energy's 3.6 MW wind turbine.A Bergey windmill next to apartments
Utility-scale turbines range in size from 100 kilowatts to as large as several megawatts. Larger wind turbines are more cost effective and are grouped together into wind farms, which provide bulk power to the electrical grid. In recent years, there has been an increase in large offshore wind installations in order to harness the huge potential that wind energy offers off the coasts of the U.S. 
Single small turbines, below 100 kilowatts, are used for homes, telecommunications dishes, or water pumping. Small turbines are sometimes used in connection with diesel generators, batteries, and photovoltaic systems. These systems are called hybrid wind systems and are typically used in remote, off-grid locations, where a connection to the utility grid is not available.
Learn more about what the Wind Program is doing to support the deployment of small and mid-sized turbines for homes, businesses, farms, and community wind projects.
read more

Tuesday, 4 August 2015

Oil Spill Assessment

 
Exponent scientists have more than 40 years of experience in assessing the impacts associated with oil spills, providing consulting services to most of the major international oil companies, as well as pipeline, oilfield engineering design and service companies. In addition, our scientists have supported U.S. and international governments in responding to and assessing spill impacts.
Our services include:
  • Emergency environmental response - cleanup and monitoring chemistry 
    • Source characterization/fingerprinting 
    • Contamination assessment 
    • Background and baseline assessment 
  • Monitoring and NRDA 
    • Exposure and bioavailability assessment 
    • Shoreline surveys and ecology studies - impact and recovery 
    • Restoration 
  • Database development 
  • Geospatial analyses 
  • Training
Emergency Environmental Response – Cleanup Monitoring Chemistry
Rapid environmental response is critical to the effective oil spill management. Exponent scientists are on call for immediate response to oil spill incidents. Our response experience focuses on environmental monitoring, assistance to spill clean-up efforts, ephemeral sampling and hydrocarbon chemistry. In complex cases involving releases into urban estuaries or industrial settings a strong scientific approach is critical to reconstructing the release, assessing injury, establishing causation, and defining the baseline. Our scientists and engineers excel in the area of source characterization and petroleum fingerprinting, and our clients rely on our combined experience in petroleum fate in the environment to accurately assess impacts and allocate those impacts to various sources.
Monitoring and Natural Resource Damage Assessment (NRDA) 

One of Exponent’s core, signature business areas is that of NRDA. Exponent has been a pioneer and a trusted consultant on NRDA issues since the first regulations were developed. Our team has unparalleled experience and depth in supporting industry in the area of NRDAs under the Oil Pollution Act (OPA), and under state claims. The fate of spilled oil in the environment must be understood in order to predict the potential for exposure of ecological receptors. Exponent’s team of petroleum chemists and toxicologists have extensive experience with determining exposures associated with oil spills, as well as issues related to the persistence and bioavailability of oil in the environment, and the use of biomarkers as measures of exposure. Our clients rely on our combined experience in contaminant assessment and biological injury assessment, along with our knowledge of transport pathways to help assess injury and allocate those injuries to various sources.
Geospatial Analysis
Exponent scientists have evaluated the geospatial implications of different oil spill response strategies on shoreline impacts. Our work has focused on the development of a GIS from base shoreline maps obtained from aerial photographs. The analysis of possible shoreline impacts from oil spills relies, in part, on the type of shoreline being affected. Our team of aerial imagery and GIS specialists evaluated the shoreline typing, and have determined that the usability of aerial photographs to populate a GIS system, and hence to assess oil spill impact and persistence, is highly dependent on the timing and quality of the aerial images. This finding is especially important when it comes to the timing of tides and image acquisition where significant offsets and errors in shoreline typing can occur without such recognition. 
 
Database Development
Exponent has developed a customizable database and interface to store, summarize, and display environmental data from a wide variety of sites and investigations, and has been customized for oil spills. Analytical data, photographs, chromatograms, and scanned documents can be linked to individual data points. The database has a web-tool protected interface that is setup for individual users and includes customized data selection tools which allow simplified searches, selection and download of data sets based on end-user needs. The data output(s) from the database can be Access or Excel format spreadsheets that can be downloaded by the user for further data analysis and interpretation. Thus no knowledge of Access will is required of the end-users.
Training
Exponent scientists have conducted oil spill training programs and seminars for clients worldwide. The training includes all of the environmental issues and response strategies and methods that are part of the short and long term response efforts. Our primary focus is on environmental sampling, NRDA, environmental monitoring and chemical fingerprinting, but also includes shoreline assessment, toxicity assessment and other oil spill related issues.
Exponent Oil Spill Experience
  • Amoco Cadiz 
  • Argo Merchant
  • Bayway Refinery (Arthur Kill)
  • Cosco Busan 
  • Deepwater Horizon
  • Ever Reach
  • Exxon Valdez
  • Haven
  • Ixtoc I
  • Katina
  • Kure
  • Kuroshima
  • Martinez Refinery (Suisun Bay)
  • New Carissa
  • Newton Lake
  • North Cape
  • Perth Amboy (Arthur Kill)
  • Prestige
  • ROPME Sea
  • Tsesis 
read more

Aluminium is the most abundant metal in the earth’s crust.


The aluminium-containing bauxite ores gibbsite, böhmite and diaspore are the basic raw material for primary aluminium production.
Proven, economically viable reserves of bauxite are sufficient to supply at least another 100 years at current demand. While demand for bauxite is expected to grow as demand for high quality aluminium products increases, new reserves will be discovered or become economically viable.
Gibbsite is an aluminium hydroxide (Al(OH)3), while böhmite and diaspore are both aluminium-oxide-hydroxides (AlO(OH)). The main difference between the latter two is that diaspore has a different crystalline structure to böhmite. Differences in ore composition and presence of iron, silicon and titanium impurities influence their subsequent processing.
90% of the world’s bauxite reserves are concentrated in tropical and sub tropical regions.
Large blanket deposits are found in West Africa, Australia, South America and India as flat layers lying near the surface, extending over an area that can cover many square kilometres. Layer thickness varies from less than a metre to 40 metres in exceptional cases, although 4 – 6 metres is average.
In the Caribbean, as well as in Southern Europe, bauxite is found in smaller pocket deposits, while interlayered deposits occur in the United States, Suriname, Brazil, Guyana, Russia, China, Hungary and the Mediterranean.
Bauxite is generally extracted by open cast mining, being almost always found near the surface, with processes that vary slightly depending on the location. Before mining can commence the land needs to be cleared of timber and vegetation. Alongside this process may be the collection of seeds and/or saplings, for inclusion in a seedbank, which will form the basis of post-mining revegetation of the site. Next the top soil is removed and is usually also stored for replacement during rehabilitation.
The layer under the top soil is known as the “overburden”. On some surface deposits there is no overburden, and on others, the bauxite may be covered by up to 20 metres of rock and clay. On average, overburden thickness is around 2 metres.
The bauxite layer beneath the overburden is broken up using methods such a blasting, drilling and ripping with very large bulldozers. Once the bauxite is loosened into manageable pieces it is generally loaded into trucks, railroad cars or conveyors and transported to crushing and washing plants or to stockpiles, before being shipped to alumina refineries, which are generally located close to bauxite mines.
Unlike the base metal ores, bauxite does not require complex processing because most of the bauxite mined is of an acceptable grade. Ore quality can be improved by relatively simple and inexpensive processes for removing clay, known as “beneficiation”, which include washing, wet screening and mechanical or manual sorting. Beneficiating ore also reduces the amount of material that needs to be transported and processed at the refinery. However, the benefits of beneficiating need to be weighed against the amount of energy and water used in the process and the management of the fine wastes produced.
read more

Monday, 3 August 2015

Cement Production Manufacturing Proccess


Cement is a fine powder which sets after a few hours when mixed with water, and then hardens in a few days into a solid, strong material. Cement is mainly used to bind fine sand and coarse aggregates together in concrete.  Cement is a hydraulic binder, i.e. it hardens when water is added.
There are 27 types of common cement which can be grouped into 5 general categories and 3 strength classes: ordinary, high and very high.  In addition, some special cements exist like sulphate resisting cement, low heat cement and calcium aluminate cement.
The quarry is the starting point
Cement plants are usually located closely either to hot spots in the market or to areas with sufficient quantities of raw materials. The aim is to keep transportation costs low. Basic constituents for cement (limestone and clay) are taken from quarries in these areas.
A two-step process
Basically, cement is produced in two steps: first, clinker is produced from raw materials. In the second step cement is produced from cement clinker. The first step can be a dry, wet, semi-dry or semi-wet process according to the state of the raw material.
Making clinker
The raw materials are delivered in bulk, crushed and homogenised into a mixture which is fed into a rotary kiln. This is an enormous rotating pipe of 60 to 90 m long and up to 6 m in diameter. This huge kiln is heated by a 2000°C flame inside of it. The kiln is slightly inclined to allow for the materials to slowly reach the other end, where it is quickly cooled to 100-200°C. 
Four basic oxides in the correct proportions make cement clinker: calcium oxide (65%), silicon oxide (20%), alumina oxide (10%) and iron oxide (5%). These elements mixed homogeneously (called “raw meal” or slurry) will combine when heated by the flame at a temperature of approximately 1450°C. New compounds are formed: silicates, aluminates and ferrites of calcium. Hydraulic hardening of cement is due to the hydration of these compounds. 
The final product of this phase is called “clinker”. These solid grains are then stored in huge silos. End of phase one.
From clinker to cement
The second phase is handled in a cement grinding mill, which may be located in a different place to the clinker plant. Gypsum (calcium sulphates) and possibly additional cementitious (such as blastfurnace slag, coal fly ash, natural pozzolanas, etc.) or inert materials (limestone) are added to the clinker. All constituents are ground leading to a fine and homogenous powder. End of phase two. The cement is then stored in silos before being dispatched either in bulk or bagged.
What is concrete?
Concrete is a solid material made of cement, water, aggregates and often with admixtures. When fresh, it has a certain workability and takes the form of the mould into which it is put. When set and hardened, it is as strong as natural stone and resists time, water, frost, mechanical constraints and fire. Typically, concrete is the essential material used in all types of construction [residential (housing), non-residential (offices) and civil engineering (roads, bridges, etc.)].

read more

Saturday, 25 July 2015

Geothermal Powerplant Energy


Geothermal energy is the heat from the Earth. It's clean and sustainable. Resources of geothermal energy range from the shallow ground to hot water and hot rock found a few miles beneath the Earth's surface, and down even deeper to the extremely high temperatures of molten rock called magma.
Almost everywhere, the shallow ground or upper 10 feet of the Earth's surface maintains a nearly constant temperature between 50° and 60°F (10° and 16°C). Geothermal heat pumps can tap into this resource to heat and cool buildings. A geothermal heat pump system consists of a heat pump, an air delivery system (ductwork), and a heat exchanger-a system of pipes buried in the shallow ground near the building. In the winter, the heat pump removes heat from the heat exchanger and pumps it into the indoor air delivery system. In the summer, the process is reversed, and the heat pump moves heat from the indoor air into the heat exchanger. The heat removed from the indoor air during the summer can also be used to provide a free source of hot water.

In the United States, most geothermal reservoirs of hot water are located in the western states, Alaska, and Hawaii. Wells can be drilled into underground reservoirs for the generation of electricity. Some geothermal power plants use the steam from a reservoir to power a turbine/generator, while others use the hot water to boil a working fluid that vaporizes and then turns a turbine. Hot water near the surface of Earth can be used directly for heat. Direct-use applications include heating buildings, growing plants in greenhouses, drying crops, heating water at fish farms, and several industrial processes such as pasteurizing milk.
Hot dry rock resources occur at depths of 3 to 5 miles everywhere beneath the Earth's surface and at lesser depths in certain areas. Access to these resources involves injecting cold water down one well, circulating it through hot fractured rock, and drawing off the heated water from another well. Currently, there are no commercial applications of this technology. Existing technology also does not yet allow recovery of heat directly from magma, the very deep and most powerful resource of geothermal energy.
Many technologies have been developed to take advantage of geothermal energy - the heat from the earth. NREL performs research to develop and advance technologies for the following geothermal applications:
Geothermal Energy Technologies:
  • Geothermal Electricity Production
    Generating electricity from the earth's heat.
  • Geothermal Direct Use
    Producing heat directly from hot water within the earth.
  • Geothermal Heat Pumps
    Using the shallow ground to heat and cool buildings.

read more

Monday, 20 July 2015

Biomass Energy


Biomass energy or bioenergy - the energy from organic matter - for thousands of years, ever since people started burning wood to cook food or to keep warm.
And today, wood is still our largest biomass energy resource. But many other sources of biomass can now be used, including plants, residues from agriculture or forestry, and the organic component of municipal and industrial wastes. Even the fumes from landfills can be used as a biomass energy source.
The use of biomass energy has the potential to greatly reduce our greenhouse gas emissions. Biomass generates about the same amount of carbon dioxide as fossil fuels, but every time a new plant grows, carbon dioxide is actually removed from the atmosphere. The net emission of carbon dioxide will be zero as long as plants continue to be replenished for biomass energy purposes. These energy crops, such as fast-growing trees and grasses, are called biomass feedstocks. The use of biomass feedstocks can also help increase profits for the agricultural industry.

Biomass Energy technology applications:
  • Biofuels
    Converting biomass into liquid fuels for transportation.
  • Biopower
    Burning biomass directly, or converting it into a gaseous fuel or oil, to generate electricity.
  • Bioproducts
    Converting biomass into chemicals for making products that typically are made from petroleum.
read more

Wednesday, 15 July 2015

Hydrogen Power System Fuel Cell


Hydrogen is the simplest element. An atom of hydrogen consists of only one proton and one electron. It's also the most plentiful element in the universe. Despite its simplicity and abundance, hydrogen doesn't occur naturally as a gas on the Earth - it's always combined with other elements. Water, for example, is a combination of hydrogen and oxygen (H2O).
Hydrogen is also found in many organic compounds, notably the hydrocarbons that make up many of our fuels, such as gasoline, natural gas, methanol, and propane. Hydrogen can be separated from hydrocarbons through the application of heat - a process known as reforming. Currently, most hydrogen is made this way from natural gas. An electrical current can also be used to separate water into its components of oxygen and hydrogen. This process is known as electrolysis. Some algae and bacteria, using sunlight as their energy source, even give off hydrogen under certain conditions.
Hydrogen is high in energy, yet an engine that burns pure hydrogen produces almost no pollution. NASA has used liquid hydrogen since the 1970s to propel the space shuttle and other rockets into orbit. Hydrogen fuel cells power the shuttle's electrical systems, producing a clean byproduct - pure water, which the crew drinks.
A fuel cell combines hydrogen and oxygen to produce electricity, heat, and water. Fuel cells are often compared to batteries. Both convert the energy produced by a chemical reaction into usable electric power. However, the fuel cell will produce electricity as long as fuel (hydrogen) is supplied, never losing its charge.
Fuel cells are a promising technology for use as a source of heat and electricity for buildings, and as an electrical power source for electric motors propelling vehicles. Fuel cells operate best on pure hydrogen. But fuels like natural gas, methanol, or even gasoline can be reformed to produce the hydrogen required for fuel cells. Some fuel cells even can be fueled directly with methanol, without using a reformer.
In the future, hydrogen could also join electricity as an important energy carrier. An energy carrier moves and delivers energy in a usable form to consumers. Renewable energy sources, like the sun and wind, can't produce energy all the time. But they could, for example, produce electric energy and hydrogen, which can be stored until it's needed. Hydrogen can also be transported (like electricity) to locations where it is needed.
Flowing water creates energy that can be captured and turned into electricity. This is called hydroelectric power or hydropower.
The most common type of hydroelectric power plant uses a dam on a river to store water in a reservoir. Water released from the reservoir flows through a turbine, spinning it, which in turn activates a generator to produce electricity. But hydroelectric power doesn't necessarily require a large dam. Some hydroelectric power plants just use a small canal to channel the river water through a turbine.
Another type of hydroelectric power plant - called a pumped storage plant - can even store power. The power is sent from a power grid into the electric generators. The generators then spin the turbines backward, which causes the turbines to pump water from a river or lower reservoir to an upper reservoir, where the power is stored. To use the power, the water is released from the upper reservoir back down into the river or lower reservoir. This spins the turbines forward, activating the generators to produce electricity.
A small or micro-hydroelectric power system can produce enough electricity for a home, farm, or ranch.
read more

Wednesday, 24 June 2015

Dijual Murah Sepeda (Merino)


Dijual Murah Sepeda (Merek Merino) cocok untuk segala usia, dijual second/bekas, kondisi masih bagus, saya jual santai bagi yang membutuhkan siapa cepat dia dapat, dijual murah beserta semua kelengkapannya.
Bagi Anda yang berminat silahkan menghubungi ke no.hp 081311264365 (Telpon saja)
COD Sekitaran Lippo Cikarang Bekasi
Spesifikasi : Sepeda Merk Merino
Dijual Rp.550.000 (Nego)
Kondisi Lengkap, Masih Bagus, Semua berfungsi Normal
Minus : Agak Berdebu karena jarang saya pakai, Ada sedikit bunyi karena jarang melumasin di  bagian gir rantai tapi tidak masalah semua masih bisa berfungsi normal baik.
Contact Person : 081311264365 (Riza)


Terima Kasih atas perhatiannya dan Selamat Berbelanja :)
read more

Tuesday, 23 June 2015

Ocean Thermal Energy

 
Workers install equipment for an ocean thermal energy conversion experiment in 1994 at Hawaii's Natural Energy Laboratory. Credit: A. Resnick, Makai Ocean Engineering, Inc.
The ocean can produce two types of energy: thermal energy from the sun's heat, and mechanical energy from the tides and waves.
Oceans cover more than 70% of Earth's surface, making them the world's largest solar collectors. The sun's heat warms the surface water a lot more than the deep ocean water, and this temperature difference creates thermal energy. Just a small portion of the heat trapped in the ocean could power the world.
Ocean thermal energy is used for many applications, including electricity generation. There are three types of electricity conversion systems: closed-cycle, open-cycle, and hybrid. Closed-cycle systems use the ocean's warm surface water to vaporize a working fluid, which has a low-boiling point, such as ammonia. The vapor expands and turns a turbine. The turbine then activates a generator to produce electricity. Open-cycle systems actually boil the seawater by operating at low pressures. This produces steam that passes through a turbine/generator. And hybrid systems combine both closed-cycle and open-cycle systems.
Ocean mechanical energy is quite different from ocean thermal energy. Even though the sun affects all ocean activity, tides are driven primarily by the gravitational pull of the moon, and waves are driven primarily by the winds. As a result, tides and waves are intermittent sources of energy, while ocean thermal energy is fairly constant. Also, unlike thermal energy, the electricity conversion of both tidal and wave energy usually involves mechanical devices.
A barrage (dam) is typically used to convert tidal energy into electricity by forcing the water through turbines, activating a generator. For wave energy conversion, there are three basic systems: channel systems that funnel the waves into reservoirs; float systems that drive hydraulic pumps; and oscillating water column systems that use the waves to compress air within a container. The mechanical power created from these systems either directly activates a generator or transfers to a working fluid, water, or air, which then drives a turbine/generator.
read more

Thursday, 11 June 2015

Martabak Telor dan Martabak Manis (Terang Bulan)


Martabak Jamur Telur Spesial Rp. 45.000,-
Terang Bulan Komplit Coklat Wijen Kacang Wijen Susu Keju Rp. 38.000,-
Lokasi Holland Simpang Tiga 3 Jombang
Rate 9/10
read more

Sunday, 31 May 2015

Jual Printer HP DESKJET F2410 (Print – Scan – Copy)



Halo  bro n sist
Gini  ane mw jual murah printer ane nih,,jarang pake,,kondisi 90%,,cuma tinta lgi abiz blom ane isi ulang,,merk HP DESKJET F2410,,3 in 1(bisa print,,scan,,copy),,sekarang mw ane jual/tukar tambah ama printer ukuran A3 bisa print aja gapapa tp klo ada yang  bisa scan ma copy jg,, untuk tukar tambah harga bisa qta nego lgi klo print nya doank ane jual Rp.500.000,- (nego) klo ada bro n sis yg minat/nego ato sekedar tanya jawab bisa inbox/comment dsini dulu tar psti ane bales klo online,,bagi Anda yang berminat silahkan menghubungi ke no.hp 081311264365 (Telpon saja)


Spesifikasi
Merek    : Printer HP DESKJET F2410 (Print – Scan – Copy)
Harga     : Rp. 500.000,- (nego)
COD      : Jombang Mojokerto Kediri dan Sekitarnya
Lokasi    : Jombang 
Telepon : 081311264365 (Riza)

Ini penampakannya :

Thanks bro n sis atas perhatiannya
read more

Tuesday, 12 May 2015

Dijual Lemari Es Kulkas Merk Sanyo



Dijual Lemari Es Kulkas Merk Sanyo
Cepat dingin, awet, irit, hemat listrik, dengan sistim frost (mencairkan es)
Kondisi masih baru 90%
Harga :1.500.000,-
Telepon : 081311264365
COD lokasi sekitar Lippo Cikarang Bekasi

read more

Tuesday, 28 April 2015

Dijual TV Televisi Berwarna TV Merk Toshiba




Dijual Televisi Berwarna TV Merk Toshiba
Kondisi normal, dapat semua channel, awet, layar bening, volume jernih
Kelengkapan remote
Harga : 350 ribu
Bonus antena
Telepon : 081311264365
COD lokasi sekitar Lippo Cikarang Bekasi

read more

Wednesday, 15 April 2015

Dijual Heater/Pemanas air murah


Dijual Heater/Pemanas air murah merk Visional Cool
Belum sempat dipakai, gress, beli baru, kondisi 100%
Harga : 100 ribu
Telepon : 081311264365
Lokasi Jombang

read more
Related Posts Plugin for WordPress, Blogger...

Share

Twitter Delicious Facebook Digg Stumbleupon Favorites More

 
Related Posts Plugin for WordPress, Blogger... Welcome-Thank's to Visit