Showing posts with label Engineering. Show all posts
Showing posts with label Engineering. Show all posts

Friday, 9 October 2015

Analysis Pipeline Failure


Applied Technical Services performs metallurgical pipe failure analysis and corrosion testing. Our capabilities include root cause determination of component and material failures incorporating analysis of engineering problems and specifications.
Our assessment services include evaluating various process and water pipe failures manufactured from steel pipe, PVC pipe, copper pipe, ABS pipe, CPVC pipe, HDPE pipe, polyethylene pipe, cast iron pipe and Kitec pipe. We perform scanning electron microscopy (SEM); microstructural analysis; optical metallography; mechanical property analysis; and scale and corrosion deposit analysis.
Our procedures assess, investigate and test engineered materials to identify the causes of failure events. In addition to problem solving, ATS assists in removing the root cause by systematically reviewing the components and processes that led to failure. Our pipe failure analysis material engineers reconstruct incidents, collect and analyze critical data for detailed analysis and reporting.
Our goal is to provide thorough pipe failure analysis results in compliance with industry standards by delivering economical and technologically advanced solutions.
Failure theories provide techniques to calculate stresses, and damage mechanisms describe material failures due to those stresses. Code techniques provide safe, conservative rules for initial pipe design, but the analysis of pipe failures requires added understanding of failure theories, plastic deformation, fatigue cracks, and crack growth after initial fracture.

Types of Pipe Failure Analysis:

  • Pipeline Failure Analysis
  • PVC Pipe Failure
  • Copper Pipe Failure
  • Water Pipe Failure
  • ABS Pipe Failure
  • CPVC Pipe Failure
  • HDPE Pipe Failure
  • Polyethylene Pipe Failure
  • Cast Iron Pipe Failure
  • KITEC Pipe Failure
read more

Tuesday, 23 June 2015

Ocean Thermal Energy

 
Workers install equipment for an ocean thermal energy conversion experiment in 1994 at Hawaii's Natural Energy Laboratory. Credit: A. Resnick, Makai Ocean Engineering, Inc.
The ocean can produce two types of energy: thermal energy from the sun's heat, and mechanical energy from the tides and waves.
Oceans cover more than 70% of Earth's surface, making them the world's largest solar collectors. The sun's heat warms the surface water a lot more than the deep ocean water, and this temperature difference creates thermal energy. Just a small portion of the heat trapped in the ocean could power the world.
Ocean thermal energy is used for many applications, including electricity generation. There are three types of electricity conversion systems: closed-cycle, open-cycle, and hybrid. Closed-cycle systems use the ocean's warm surface water to vaporize a working fluid, which has a low-boiling point, such as ammonia. The vapor expands and turns a turbine. The turbine then activates a generator to produce electricity. Open-cycle systems actually boil the seawater by operating at low pressures. This produces steam that passes through a turbine/generator. And hybrid systems combine both closed-cycle and open-cycle systems.
Ocean mechanical energy is quite different from ocean thermal energy. Even though the sun affects all ocean activity, tides are driven primarily by the gravitational pull of the moon, and waves are driven primarily by the winds. As a result, tides and waves are intermittent sources of energy, while ocean thermal energy is fairly constant. Also, unlike thermal energy, the electricity conversion of both tidal and wave energy usually involves mechanical devices.
A barrage (dam) is typically used to convert tidal energy into electricity by forcing the water through turbines, activating a generator. For wave energy conversion, there are three basic systems: channel systems that funnel the waves into reservoirs; float systems that drive hydraulic pumps; and oscillating water column systems that use the waves to compress air within a container. The mechanical power created from these systems either directly activates a generator or transfers to a working fluid, water, or air, which then drives a turbine/generator.
read more
Related Posts Plugin for WordPress, Blogger...

Share

Twitter Delicious Facebook Digg Stumbleupon Favorites More

 
Related Posts Plugin for WordPress, Blogger... Welcome-Thank's to Visit